3.3.41 \(\int \frac {\tanh ^2(x)}{(a+b \tanh ^2(x))^{3/2}} \, dx\) [241]

3.3.41.1 Optimal result
3.3.41.2 Mathematica [B] (verified)
3.3.41.3 Rubi [A] (verified)
3.3.41.4 Maple [B] (verified)
3.3.41.5 Fricas [B] (verification not implemented)
3.3.41.6 Sympy [F]
3.3.41.7 Maxima [F]
3.3.41.8 Giac [B] (verification not implemented)
3.3.41.9 Mupad [F(-1)]

3.3.41.1 Optimal result

Integrand size = 17, antiderivative size = 53 \[ \int \frac {\tanh ^2(x)}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a+b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{(a+b)^{3/2}}-\frac {\tanh (x)}{(a+b) \sqrt {a+b \tanh ^2(x)}} \]

output
arctanh((a+b)^(1/2)*tanh(x)/(a+b*tanh(x)^2)^(1/2))/(a+b)^(3/2)-tanh(x)/(a+ 
b)/(a+b*tanh(x)^2)^(1/2)
 
3.3.41.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(112\) vs. \(2(53)=106\).

Time = 1.69 (sec) , antiderivative size = 112, normalized size of antiderivative = 2.11 \[ \int \frac {\tanh ^2(x)}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=\frac {\tanh (x) \left (\text {arctanh}\left (\frac {\sqrt {\frac {(a+b) \tanh ^2(x)}{a}}}{\sqrt {1+\frac {b \tanh ^2(x)}{a}}}\right ) \left (b+a \coth ^2(x)\right ) \sqrt {\frac {(a+b) \tanh ^2(x)}{a}}-(a+b) \sqrt {1+\frac {b \tanh ^2(x)}{a}}\right )}{(a+b)^2 \sqrt {a+b \tanh ^2(x)} \sqrt {1+\frac {b \tanh ^2(x)}{a}}} \]

input
Integrate[Tanh[x]^2/(a + b*Tanh[x]^2)^(3/2),x]
 
output
(Tanh[x]*(ArcTanh[Sqrt[((a + b)*Tanh[x]^2)/a]/Sqrt[1 + (b*Tanh[x]^2)/a]]*( 
b + a*Coth[x]^2)*Sqrt[((a + b)*Tanh[x]^2)/a] - (a + b)*Sqrt[1 + (b*Tanh[x] 
^2)/a]))/((a + b)^2*Sqrt[a + b*Tanh[x]^2]*Sqrt[1 + (b*Tanh[x]^2)/a])
 
3.3.41.3 Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 53, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.412, Rules used = {3042, 25, 4153, 25, 373, 291, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tanh ^2(x)}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {\tan (i x)^2}{\left (a-b \tan (i x)^2\right )^{3/2}}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int \frac {\tan (i x)^2}{\left (a-b \tan (i x)^2\right )^{3/2}}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle -\int -\frac {\tanh ^2(x)}{\left (1-\tanh ^2(x)\right ) \left (b \tanh ^2(x)+a\right )^{3/2}}d\tanh (x)\)

\(\Big \downarrow \) 25

\(\displaystyle \int \frac {\tanh ^2(x)}{\left (1-\tanh ^2(x)\right ) \left (a+b \tanh ^2(x)\right )^{3/2}}d\tanh (x)\)

\(\Big \downarrow \) 373

\(\displaystyle \frac {\int \frac {1}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^2(x)+a}}d\tanh (x)}{a+b}-\frac {\tanh (x)}{(a+b) \sqrt {a+b \tanh ^2(x)}}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\int \frac {1}{1-\frac {(a+b) \tanh ^2(x)}{b \tanh ^2(x)+a}}d\frac {\tanh (x)}{\sqrt {b \tanh ^2(x)+a}}}{a+b}-\frac {\tanh (x)}{(a+b) \sqrt {a+b \tanh ^2(x)}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\text {arctanh}\left (\frac {\sqrt {a+b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{(a+b)^{3/2}}-\frac {\tanh (x)}{(a+b) \sqrt {a+b \tanh ^2(x)}}\)

input
Int[Tanh[x]^2/(a + b*Tanh[x]^2)^(3/2),x]
 
output
ArcTanh[(Sqrt[a + b]*Tanh[x])/Sqrt[a + b*Tanh[x]^2]]/(a + b)^(3/2) - Tanh[ 
x]/((a + b)*Sqrt[a + b*Tanh[x]^2])
 

3.3.41.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 373
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 
1)/(2*(b*c - a*d)*(p + 1))), x] - Simp[e^2/(2*(b*c - a*d)*(p + 1))   Int[(e 
*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(m - 1) + d*(m + 2*p + 
 2*q + 3)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 
 0] && LtQ[p, -1] && GtQ[m, 1] && LeQ[m, 3] && IntBinomialQ[a, b, c, d, e, 
m, 2, p, q, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.3.41.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(288\) vs. \(2(45)=90\).

Time = 0.08 (sec) , antiderivative size = 289, normalized size of antiderivative = 5.45

method result size
derivativedivides \(-\frac {\tanh \left (x \right )}{a \sqrt {a +b \tanh \left (x \right )^{2}}}+\frac {1}{2 \left (a +b \right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}+\frac {b \left (2 b \left (1+\tanh \left (x \right )\right )-2 b \right )}{\left (a +b \right ) \left (4 \left (a +b \right ) b -4 b^{2}\right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}-\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {b \left (2 b \left (\tanh \left (x \right )-1\right )+2 b \right )}{\left (a +b \right ) \left (4 \left (a +b \right ) b -4 b^{2}\right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}\) \(289\)
default \(-\frac {\tanh \left (x \right )}{a \sqrt {a +b \tanh \left (x \right )^{2}}}+\frac {1}{2 \left (a +b \right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}+\frac {b \left (2 b \left (1+\tanh \left (x \right )\right )-2 b \right )}{\left (a +b \right ) \left (4 \left (a +b \right ) b -4 b^{2}\right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}-\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {b \left (2 b \left (\tanh \left (x \right )-1\right )+2 b \right )}{\left (a +b \right ) \left (4 \left (a +b \right ) b -4 b^{2}\right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}\) \(289\)

input
int(tanh(x)^2/(a+b*tanh(x)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
-tanh(x)/a/(a+b*tanh(x)^2)^(1/2)+1/2/(a+b)/(b*(1+tanh(x))^2-2*b*(1+tanh(x) 
)+a+b)^(1/2)+b/(a+b)*(2*b*(1+tanh(x))-2*b)/(4*(a+b)*b-4*b^2)/(b*(1+tanh(x) 
)^2-2*b*(1+tanh(x))+a+b)^(1/2)-1/2/(a+b)^(3/2)*ln((2*a+2*b-2*b*(1+tanh(x)) 
+2*(a+b)^(1/2)*(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2))/(1+tanh(x)))-1 
/2/(a+b)/(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2)+b/(a+b)*(2*b*(tanh(x) 
-1)+2*b)/(4*(a+b)*b-4*b^2)/(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2)+1/2 
/(a+b)^(3/2)*ln((2*a+2*b+2*b*(tanh(x)-1)+2*(a+b)^(1/2)*(b*(tanh(x)-1)^2+2* 
b*(tanh(x)-1)+a+b)^(1/2))/(tanh(x)-1))
 
3.3.41.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 861 vs. \(2 (45) = 90\).

Time = 0.35 (sec) , antiderivative size = 2281, normalized size of antiderivative = 43.04 \[ \int \frac {\tanh ^2(x)}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=\text {Too large to display} \]

input
integrate(tanh(x)^2/(a+b*tanh(x)^2)^(3/2),x, algorithm="fricas")
 
output
[1/4*(((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 
 + 2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 + a - b)*sinh(x)^2 + 4*((a 
 + b)*cosh(x)^3 + (a - b)*cosh(x))*sinh(x) + a + b)*sqrt(a + b)*log(-((a*b 
^2 + b^3)*cosh(x)^8 + 8*(a*b^2 + b^3)*cosh(x)*sinh(x)^7 + (a*b^2 + b^3)*si 
nh(x)^8 - 2*(a*b^2 + 2*b^3)*cosh(x)^6 - 2*(a*b^2 + 2*b^3 - 14*(a*b^2 + b^3 
)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a*b^2 + b^3)*cosh(x)^3 - 3*(a*b^2 + 2*b^3) 
*cosh(x))*sinh(x)^5 + (a^3 - a^2*b + 4*a*b^2 + 6*b^3)*cosh(x)^4 + (70*(a*b 
^2 + b^3)*cosh(x)^4 + a^3 - a^2*b + 4*a*b^2 + 6*b^3 - 30*(a*b^2 + 2*b^3)*c 
osh(x)^2)*sinh(x)^4 + 4*(14*(a*b^2 + b^3)*cosh(x)^5 - 10*(a*b^2 + 2*b^3)*c 
osh(x)^3 + (a^3 - a^2*b + 4*a*b^2 + 6*b^3)*cosh(x))*sinh(x)^3 + a^3 + 3*a^ 
2*b + 3*a*b^2 + b^3 + 2*(a^3 - 3*a*b^2 - 2*b^3)*cosh(x)^2 + 2*(14*(a*b^2 + 
 b^3)*cosh(x)^6 - 15*(a*b^2 + 2*b^3)*cosh(x)^4 + a^3 - 3*a*b^2 - 2*b^3 + 3 
*(a^3 - a^2*b + 4*a*b^2 + 6*b^3)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(b^2*cosh( 
x)^6 + 6*b^2*cosh(x)*sinh(x)^5 + b^2*sinh(x)^6 - 3*b^2*cosh(x)^4 + 3*(5*b^ 
2*cosh(x)^2 - b^2)*sinh(x)^4 + 4*(5*b^2*cosh(x)^3 - 3*b^2*cosh(x))*sinh(x) 
^3 - (a^2 - 2*a*b - 3*b^2)*cosh(x)^2 + (15*b^2*cosh(x)^4 - 18*b^2*cosh(x)^ 
2 - a^2 + 2*a*b + 3*b^2)*sinh(x)^2 - a^2 - 2*a*b - b^2 + 2*(3*b^2*cosh(x)^ 
5 - 6*b^2*cosh(x)^3 - (a^2 - 2*a*b - 3*b^2)*cosh(x))*sinh(x))*sqrt(a + b)* 
sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x 
)*sinh(x) + sinh(x)^2)) + 4*(2*(a*b^2 + b^3)*cosh(x)^7 - 3*(a*b^2 + 2*b...
 
3.3.41.6 Sympy [F]

\[ \int \frac {\tanh ^2(x)}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=\int \frac {\tanh ^{2}{\left (x \right )}}{\left (a + b \tanh ^{2}{\left (x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(tanh(x)**2/(a+b*tanh(x)**2)**(3/2),x)
 
output
Integral(tanh(x)**2/(a + b*tanh(x)**2)**(3/2), x)
 
3.3.41.7 Maxima [F]

\[ \int \frac {\tanh ^2(x)}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=\int { \frac {\tanh \left (x\right )^{2}}{{\left (b \tanh \left (x\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(tanh(x)^2/(a+b*tanh(x)^2)^(3/2),x, algorithm="maxima")
 
output
integrate(tanh(x)^2/(b*tanh(x)^2 + a)^(3/2), x)
 
3.3.41.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 293 vs. \(2 (45) = 90\).

Time = 0.46 (sec) , antiderivative size = 293, normalized size of antiderivative = 5.53 \[ \int \frac {\tanh ^2(x)}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=-\frac {\frac {{\left (a^{2} b + a b^{2}\right )} e^{\left (2 \, x\right )}}{a^{3} b + 2 \, a^{2} b^{2} + a b^{3}} - \frac {a^{2} b + a b^{2}}{a^{3} b + 2 \, a^{2} b^{2} + a b^{3}}}{\sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}} - \frac {\log \left ({\left | -{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} {\left (a + b\right )} - \sqrt {a + b} {\left (a - b\right )} \right |}\right )}{2 \, {\left (a + b\right )}^{\frac {3}{2}}} - \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b} \right |}\right )}{2 \, {\left (a + b\right )}^{\frac {3}{2}}} + \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b} \right |}\right )}{2 \, {\left (a + b\right )}^{\frac {3}{2}}} \]

input
integrate(tanh(x)^2/(a+b*tanh(x)^2)^(3/2),x, algorithm="giac")
 
output
-((a^2*b + a*b^2)*e^(2*x)/(a^3*b + 2*a^2*b^2 + a*b^3) - (a^2*b + a*b^2)/(a 
^3*b + 2*a^2*b^2 + a*b^3))/sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b* 
e^(2*x) + a + b) - 1/2*log(abs(-(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b* 
e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))*(a + b) - sqrt(a + b)*(a - b 
)))/(a + b)^(3/2) - 1/2*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b* 
e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) + sqrt(a + b)))/(a + b)^(3/2) 
 + 1/2*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^( 
2*x) - 2*b*e^(2*x) + a + b) - sqrt(a + b)))/(a + b)^(3/2)
 
3.3.41.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\tanh ^2(x)}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx=\int \frac {{\mathrm {tanh}\left (x\right )}^2}{{\left (b\,{\mathrm {tanh}\left (x\right )}^2+a\right )}^{3/2}} \,d x \]

input
int(tanh(x)^2/(a + b*tanh(x)^2)^(3/2),x)
 
output
int(tanh(x)^2/(a + b*tanh(x)^2)^(3/2), x)